Eco-Retrofit for Householders Unit 3: Insulation

Richard Shears March 10, 2022 Contact details Training by:

Agenda

- Introductions
- Recap: the Whole House Approach
- Why insulate?
- Insulation approaches and materials
- Insulation performance: thermal conductivity and U-values
- Regulations, standards, and quality
- Wrap-up
- Q&A

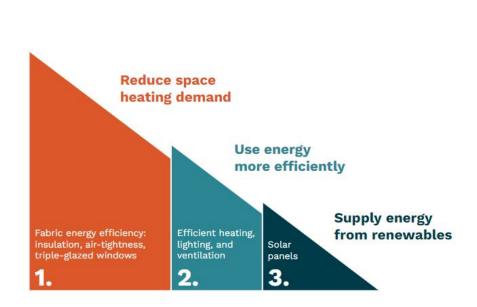
Introductions

People Powered Retrofit

PEOPLE POUERED RETROFIT

Recap: Whole House Retrofit

Which systems interact in a whole house retrofit?


The Whole House Approach

- Houses are complex systems
- Context specific and 'risk management' approach
- Be aware of potential unintended consequences
- Any new measures must be well considered, well designed, well installed and understood by the resident

The Whole House Approach - Fabric First

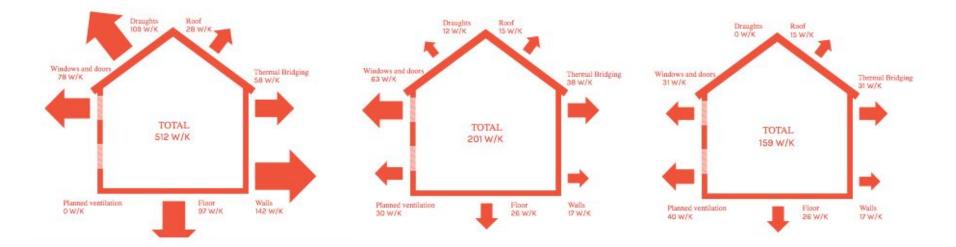
Why?

- More effective building services
- Lower maintenance
- No unnecessary 'eco-bling'
- Reduced ongoing costs
- Better living conditions
- Reduces fuel poverty
- Future-proofs homes
- Easier approach to meeting target CO2 savings

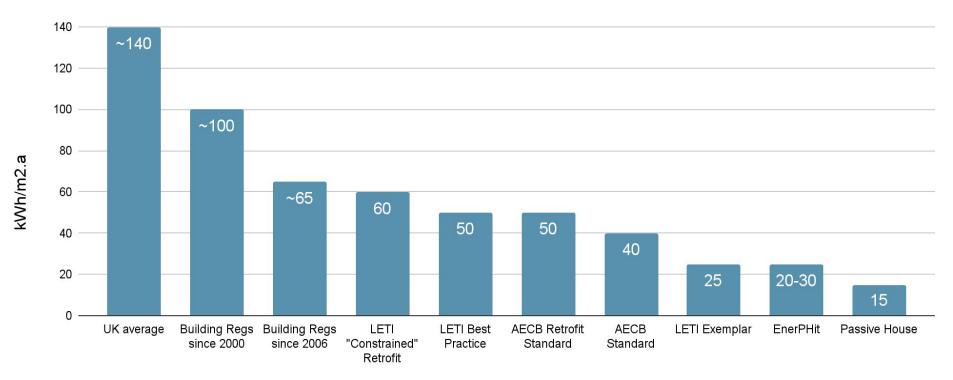
Why insulate?

Why insulate?

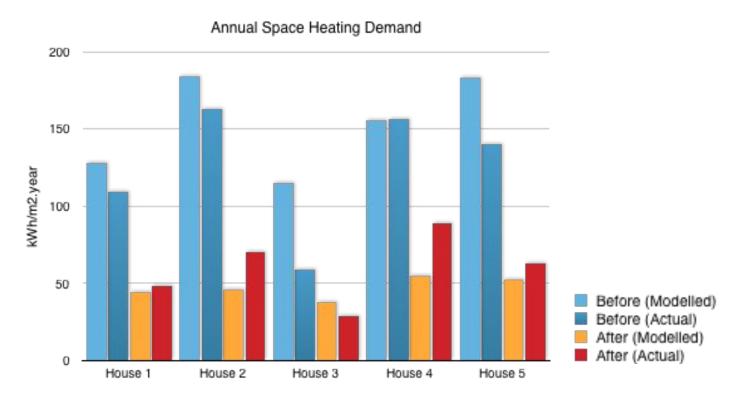
- Address fabric heat loss
- Reduce space heating demand
- Reduce peak heating demand
- Improve comfort



Address heat loss


Address heat loss

Reducing heat loss



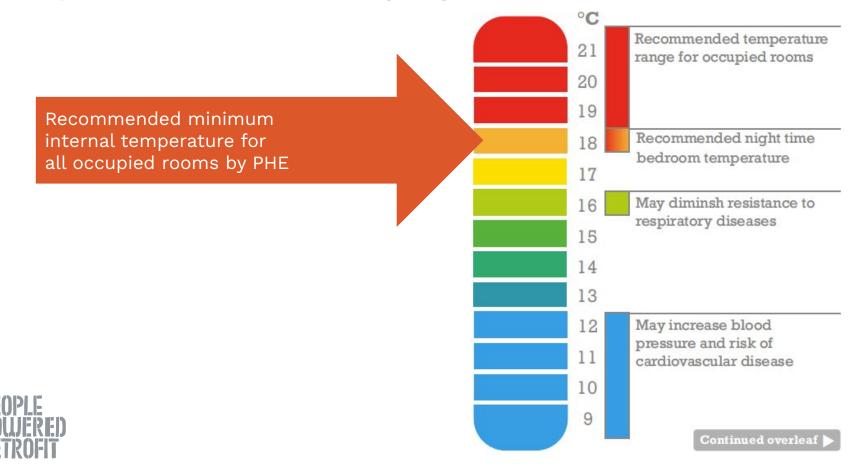
Space Heating Demand (kWh/m2.a)

What's possible in retrofit?

PEOPLE POUJEREI RETROFIT

http://carbon.coop/sites/default/files/attachments/2017-06-22/20170622%20Po wering%20Down%20Together%20case%20study%20-%20full%20report.pdf

Peak Heating Demand (w/K* design temperature)


Rate of heat input a building needs to maintain a comfortable internal temperature at peak usage e.g. cloudy, cold winter day

Used to:

- Sizing heating systems e.g. heat pump/radiators
- Considering impact on individual houses and impact on the grid (demand vs. capacity)

Improve comfort: Meet heating targets

Improve comfort: Addressing cold

Keeping warm when it's cold

Insulation:

- Reduces conduction
- Raises surface temperatures

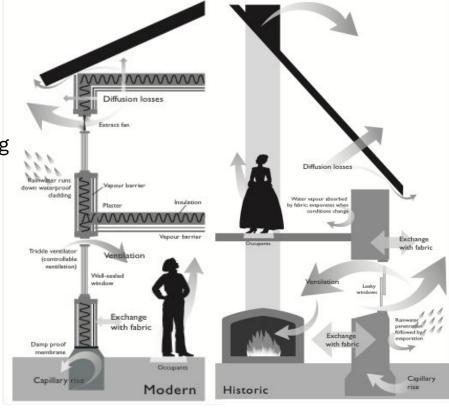


Improve comfort: Addressing heat

Keeping cool when it's hot

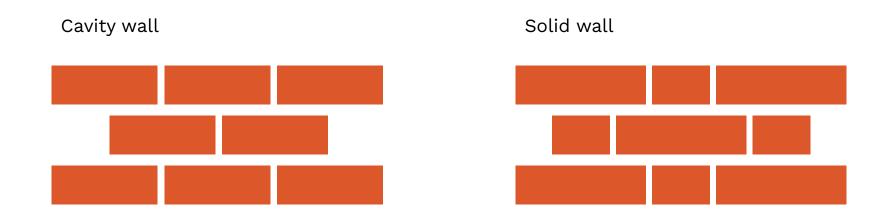
Consider:

- Position and amount of windows/glass
- Shade
- 'Decrement delay'
- Ventilation
- Building services


Insulation approaches and materials

Building types

Modern homes:


- Central heating
- Double-glazing
- Draught-proofing

Older homes:

- Coal fires
- 'Breathable' materials

http://www.english-heritage.org.uk/publications/en ergy-efficiency-historic-buildings-ptl/ Walls

Not always easy to tell the difference!

Walls: Cavity wall insulation

- Injecting polystyrene beads or mineral fibre
- Solutions available for narrower cavities and those difficult to access
- Requires professional installation
- <u>https://ciga.co.uk/</u>
- Can be combined with EWI

Walls: Cavity wall insulation

Benefits

- Can reduce heat loss through the wall by ~75%
- Quick and minimal disruption

Take care

- Exposure and wind-driven rain (see LABC map)
- Condition of the cavity
- Off-gassing
- Vents sleeved?
- Holes plugged afterwards?
- Full fill (avoiding cold spots)
- Closures: window/door openings; top of walls
- Difficult to extract if done wrong

Walls: External wall insulation (EWI)

- Insulation fixed to outside walls
- Solid or cavity walls (if cavity checked and filled)
- Render, cladding,
 brick slip finish or
 tile hanging

Walls: External wall insulation (EWI)

Figure 24 Note large areas of exposed building elements

Benefits

- No loss of internal living space
- Minimal internal disruption

Take care

- Details (see images), ventilation, cold bridges
- Planning permission
- Additional costs: scaffolding, party wall, moving services, excavation etc.
- Fire risks: combustible materials and surface spread of flame
- Material choice

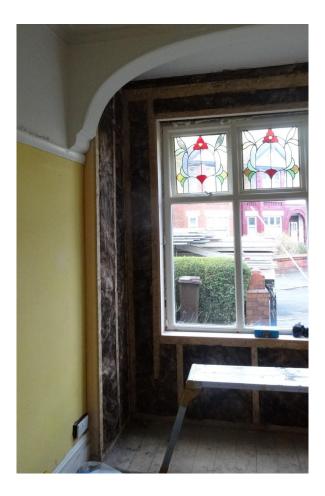

Image credit and further reading:

Figure 25 Large thermal bridge created by lamppost

https://historicengland.org.uk/research/results/reports/88-2014/ExternalWallInsulationinTraditionalBuildings 25

Walls: Internal wall insulation (IWI)

- Insulation added to internal walls
- Solid walls
- External aesthetics

Walls: Internal wall insulation (IWI)

Benefits

- Maintains external appearance of the home
- One room at a time is possible (if you ensure joining for thermal and air-tight performance)

Take care

- Disruptive and messy!
- Condition of external wall and level of exposure
- Requires good understanding of moisture movement through walls and airtightness skills
- Hanging pictures/shelves etc. afterwards!

Walls: Multiple methods

Roofs and lofts

 Insulation added to the floor of a loft space or at rafter level
 Installed from above or below

Walls: Roof/Loft Insulation

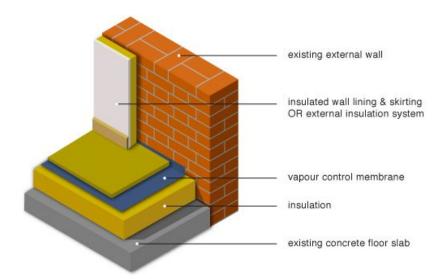
Benefits

- Can be DIY
- Very cost-effective
- Material choice including recycled options

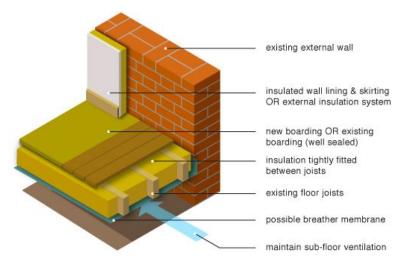
Take care

- Condensation!
- Storage
- Cold water tank
- Electrical cables and recessed lighting

Floors


Insulation between joists (suspended timber floor) or above/below a concrete slab.

Typically 200mm (between joists) or 100 – 160mm (concrete slab)


Floors

Upgrading an existing slab

- Dig up and replace
- Leave and insulate at perimeter

Upgrading an existing suspended timber floor

Floors

Benefits

Comfort

Less disruptive (if accessible)

Take care

Access to sub-floor void

Maintain sub-floor ventilation

Check condition of existing floor carefully

Joins with wall insulation

Airtightness

Considerations when choosing insulating materials

- Petrochemical vs.non-petrochemical
- Fibre vs.foam
- Flexible vs.rigid
- Vapour permeability
- Diffusion
- Capillary action
- Thermal conductivity
- Fire retardancy
- Price

Insulating materials: Examples

Windows and doors

Double/triple glazing

Low-e glass

Filled with inert gas e.g. argon, krypton etc.

Warm edge spacers

Can reduce fabric and draught heat-loss

Secondary glazing

Windows and doors

Benefits

Comfort

Noise

Take care

Installation key to reduce air leakage

Refurbishing existing frames – cost vs. performance

Reminder: Whole house Approach

Insulation +

Air-tightness +

Ventilation

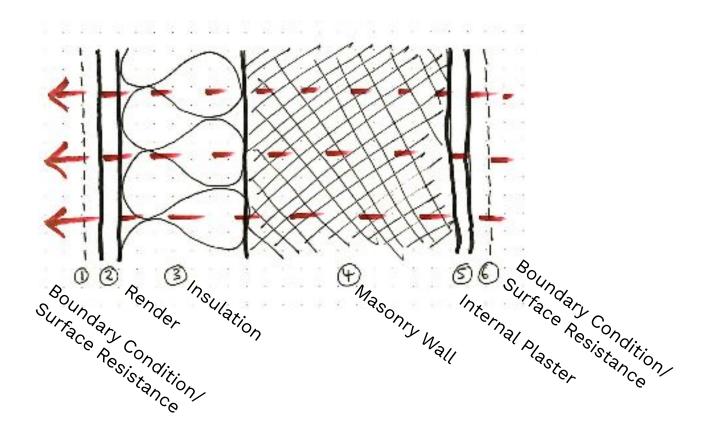
Knowledge check

What features should you consider when choosing insulating materials, and why?

Insulation performance: thermal conductivity and U-values

Thermal conductivity

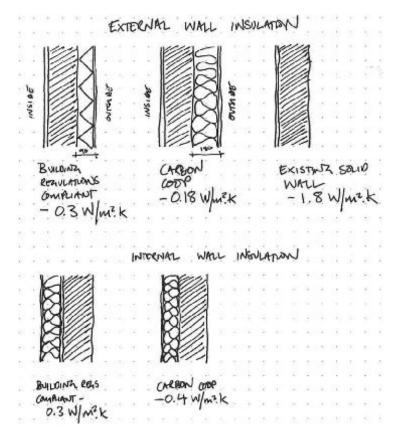
Material	Thermal conductivity (W/m K)
Copper	390
Aluminium	237
Steel	43
Dense concrete (2100 kg/m³)	1.40
Glass	0.93
Plasterboard	0.21
Polystyrene	0.15
Timber (650 kg/m³)	0.14
Mineral wool slab (25 kg/m³)*	0.035
Expanded Polystyrene (EPS)*	0.032-0.040
Extruded Polystyrene (XPS)*	0.029-0.038
Polyurethane (PUR)*	0.022-0.035
Polyisocyanurate (PIR)*	0.022-0.028


*These are fibre and foamed materials, not solid.

Lower score = more insulating

http://www.greenspec.co.uk/buildingdesign/insulation-materials-thermal-

U-values



http://www.greenspec.co.uk/buildi ng-design/u-value-introduction/

44

Typical U-values

- Un-insulated roof: 2.5 W/m².K
- Insulated roof (at rafters): 0.16 W/m².K
- Insulate loft (at ceiling): 0.11 W/m².K
- Uninsulated Floor: 0.8 W/m².K
- Solid floor (perimeter insulation only: 0.45W/m².K
- Fully Insulated Floor: 0.2 W/m².K
- Uninsulated Solid Wall: 1.7-2.1 W/m².K
- Uninsulated Cavity Wall: 1.5 W/m².K
- Insulated Cavity Wall: 0.4 W/m².K
- External Wall Insulation: 0.3-0.15 W/m².K
- Internal Wall Insulation: 0.4 W/m².K
- Single glazed window: 5.6 W/m².K
- Double glazed window: 1.2-2.4 W/m².K
 - Triple glazed window: 0.6-1.1 W/m².

A 10 square metre area of wall has a U-value of 2 W/m2.K

The internal temperature is 20C. The external temperature is 0C.

What is the rate of heat loss through the wall?

A ${\bf 10}$ square metre area of uninsulated solid wall has a U-value of ${\bf 1.8}$ W/m2.K

The internal temperature is **20**C. The external temperature is 0C.

What is the rate of heat loss through the wall?

= 10 x 1.8 x 20

= 360 Watt

Rate of heat loss through wall = 360 Watt

How much energy is lost through the wall in two hours, if the temperature stays the same?

Rate of heat loss through wall = 360 Watt

How much energy is lost through the wall in two hours, if the temperature stays the same?

- = **360 Watt** x **2** hours
- = 720 Watt hours
- = **0.72kWh**

Uninsulated wall: 0.72kWh lost in two hours

How does this change if we consider a 10 square metre area of solid wall with external wall insulation, with a U-value of 0.3 W/m2.K, in the same conditions?

A 10 square metre area of externally insulated solid wall has a U-value of 0.3 W/m2.K

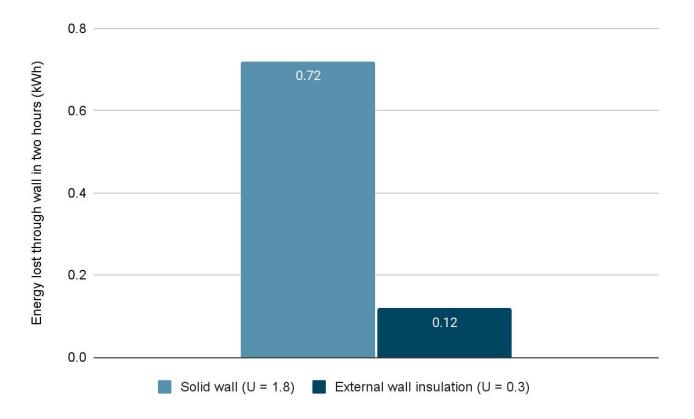
The internal temperature is 20C. The external temperature is 0C.

What is the rate of heat loss through the wall?

- = 10 x 0.3 x 20
- = 60 Watt

Rate of heat loss through wall = 60 Watt

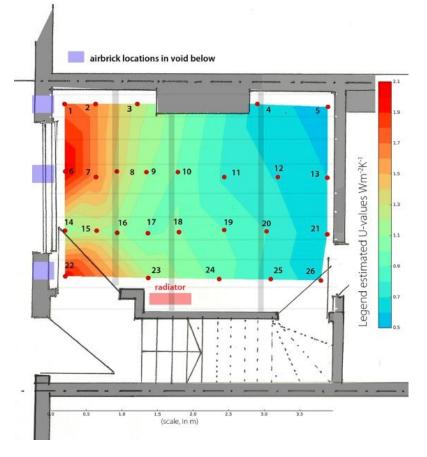
How much energy is lost through the wall in two hours, if the temperature stays the same?



Rate of heat loss through wall = 60 Watt

How much energy is lost through the wall in two hours, if the temperature stays the same?

- = **60 Watt** x **2** hours
- = **120 Watt** hours
- = **0.12kWh**

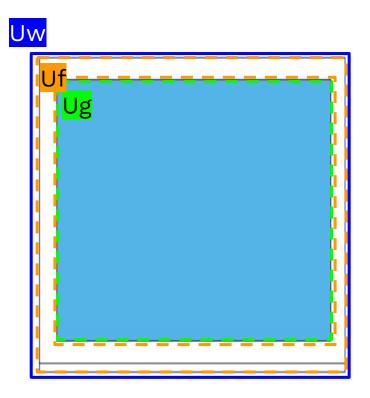


U-values: Roofs and Floors

Roofs: pitch

Solid floors: ratio of exposed perimeter to floor area - most heat is lost from the perimeter of floor

Suspended floors: temperature and ventilation of sub-floor void (see image)


Sofie Pelsmakers work on suspended timber floors is interesting: http://www.sciencedirect.com/science/article/pii/S0378778817311350

U-values: Windows

U_g: glazing

U_f: frame

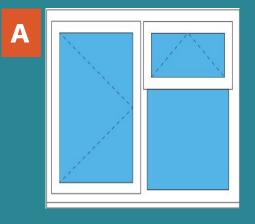
U_w: overall; frame and glazing

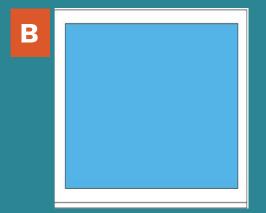
U-values: Doors

- U_g: glazing
- U_f: frame
- U_{D} : overall; frame and glazing

Window and Door Installation

Air-tight installation of the window and door is just as important as U-value!





Your turn!

Which window has the better U value?

Regulations, standards, and quality

Building Regulations

Part A Structure

Part B Fire

Part C Moisture

Part F Ventilation

Part G Water use

Part J Fuel burning appliances

Part L Energy use

https://www.planningportal.co.uk/applications/building-control-applications/building-control/approved-documents

Standards

AECB Retrofit Standard

<u>LETI</u>

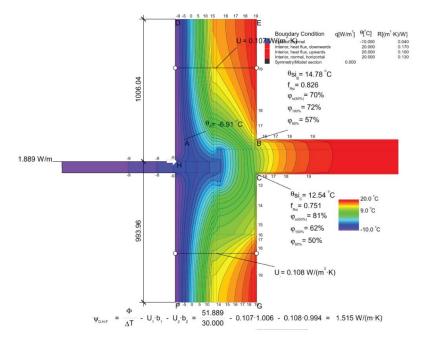
Passive House Standards

Planning permission

Kelcome to the Planning Portal & Do you need permission?
Common projects & Insulation & Planning permission

Planning permission

Building Regulations: Introduction


Building Regulations: Loft Insulation Planning permission is not normally required for fitting insulation (where there is no change in external appearance). However, if the building is listed or is in a conservation area you should consult your local planning authority.

Find your Local Planning Authority

PEOPLE Powerei Retrofit About Planning Portal adverts

Quality: Thermal bridging

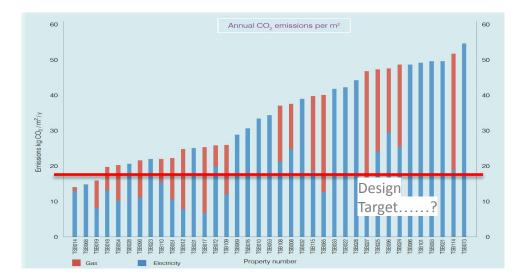
- Weak link in 'thermal envelope'
- Adds complexity when insulating in retrofit
- Reduces effectiveness
- Cold spots cause mould

BEWARE: Quality!

BEWARE: Quality!

Carbon Co-op

Your turn!



The Performance Gap

Where does it come from?:

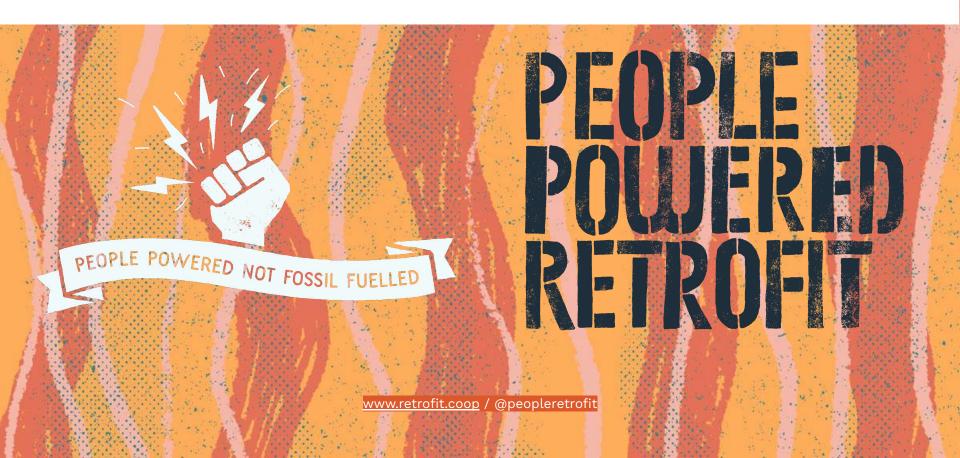
- Modelling?
- Design?
- Construction quality?
- User behaviour?
- Design target?

From: 'Retrofit Revealed' (2012) Report on TSB Retrofit for the Future Programme.

Factors to consider

- Performance
- Practicality
- Sustainable materials
- Cost

What is most important to you?



Learn more

- <u>https://cafs.org.uk/</u>
- <u>https://carbon.coop/carbon-co-op-webinar-programme/</u>
- <u>https://www.cse.org.uk/advice/advice-and-support</u>
- <u>https://cat.org.uk/</u>
- <u>https://responsible-retrofit.org/</u>
- <u>https://www.changeworks.org.uk/</u>
- <u>https://www.backtoearth.co.uk/</u>
- <u>https://passipedia.org/</u>
- <u>https://aecb.net/aecb-retrofit-standard/</u>
- <u>https://www.leti.london/</u>
- <u>https://www.passivhaustrust.org.uk/</u>

